Трансформатор

Особенности трансформаторов:

Частота:

При одинаковых напряжениях первичной обмотки, трансформатор, разработанный для частоты 50 Гц, может использоваться при частоте сети 60 Гц, но не наоборот. При частоте меньше номинальной увеличивается индукция в магнитопроводе, что может повлечь его насыщение и как следствие резкое увеличение тока холостого хода и изменение его формы. При частоте больше номинальной повышается величина паразитных токов в магнитопроводе, повышенный нагрев магнитопровода и обмотки, приводящие к ускоренному старению и разрушению изоляции.

Габариты трансформатора напрямую зависят от частоты тока в цепи, в которой он будет установлен. Зависимость эта обратная, т.е. с увеличением частоты габариты трансформатора значительно уменьшаются. Именно поэтому, импульсные блоки питания (с импульсными высокочастотными трансформаторами) намного компактнее обычных линейных.

Объясняется данный факт до неприличия просто. По сути, все объяснение можно вывести из закона электромагнитной индукции Фарадея (формулы рассматривались в разделе индуктивность.

Габаритные размеры практически полностью определяют величину индуктивности, т.е. коэффициент пропорциональности между магнитным потоком и электрическим током. Соответственно, в обычном сетевом трансформаторе на 50 Гц, для увеличения пропускаемой мощности, которая определяется величиной ЭДС индукции, необходимо увеличивать габариты магнитопровода. Однако если Вы внимательно посмотрите на формулу ЭДС индукции, то сможете разглядеть там частоту тока, вызывающего эту самую ЭДС индукции. И если Ваш мозг не спит, то он сразу же скажет вам, что «Вот оно, решение! И чего это люди раньше до такого не додумались?». На самом деле, так и есть, но изготовление таких трансформаторов само по себе сложнее, чем в случае с обычными. К тому же, высокая рабочая частота тока требует совершенно иной схемотехники и конструкции прибора, а также полупроводниковых приборов, способных работать на такой частоте. Именно поэтому данный класс устройств получил широкое распространение лишь в последнее время.

При работе на высоких частотах, начинает значительно проявляться поверхностный эффект (скин-эффект), выражается это проявление в разогреве обмоточных проводов, уменьшении КПД и появлению паразитных гармоник напряжения и тока. Чтобы снизить данный эффект в высокочастотных трансформаторах и катушках индуктивности, в качестве обмоточного применяется специальный вид провода — литцендрат (нем. Litzen — пряди и Draht — провод) — многожильный провод, каждая жила которого покрыта изолирующим лаком. Однако данный вид провода вызывает значительное удорожание продукции, т.к. сложен в изготовлении и пайке.

Коэффициент трансформации:

Трансформаторы могут быть как понижающими, так и повышающими, соответственно коэффициент трансформации может быть больше единицы или меньше. Коэффициент трансформации численно равен отношению числа витков первичной обмотки к числу витков вторичной.

Основные параметры трансформаторов:

  • Коэффициент трансформации:

Определяет тип трансформатора – понижающий или повышающий. Может указываться в неявном виде, т.е. просто задается рабочее напряжение первичной и вторичной обмоток, например, 220В/24В.

  • Количество вторичных обмоток;
  • Номинальная мощность:

Максимальная мощность, которую трансформатор способен пропустить через себя. Часто вместо мощности указывают максимальный ток вторичной обмотки.

  • Класс точности:

Данный параметр указывается только для измерительных трансформаторов. Характеризует точность и стабильность коэффициента трансформации.

  • Индуктивность обмоток:

Этот параметр нормируется только для согласующих трансформаторов.

Маркировка трансформаторов:

Так как габариты даже высокочастотных трансформаторов не такие уж и маленькие, по сравнению с остальными электронными приборами, то информация обычно указывается в явном виде.

На трансформаторах указывается:

  • Тип трансформатора, например, ТП – трансформатор питания (т.е. силовой);
  • Рабочее напряжение первичной и всех вторичных обмоток;
  • Указывается либо номинальная мощность, либо максимальный ток для каждой вторичной обмотки;
  • Число вторичных обмоток;
  • Рабочая частота;
  • Для измерительных трансформаторов указывается классточности;
  • Для согласующих трансформаторов указывается индуктивность обмоток.

Условное обозначение трансформаторов на схемах:

УГО трансформаторов
Рисунок 1 — УГО трансформаторов.
  1. – трансформатор с ферритовым сердечником;
  2. – трансформатор с сердечником из магнитодиэлектрика, т.е. диэлектрического магнитного материала;
  3. – трансформатор с ферритовым сердечником с 2 вторичными обмотками;
  4. – трансформатор с ферритовым сердечником с отводами из вторичной обмотки.

Рядом с условным обозначением указывается тип элемента (T) и порядковый номер, также рядом с условным обозначением может указываться (не является обязательным требованием) коэффициент трансформации.

Внешний вид трансформаторов:

Импульсные:

Внешний вид импульсных трансформаторов
Рисунок 2 — Внешний вид импульсных трансформаторов.

Сетевые (силовые):

Внешний вид силовых трансформаторов
Рисунок 3 — Внешний вид силовых трансформаторов.

Измерительные трансформаторы тока:

Внешний вид измерительных трансформаторов (трансформаторов тока)
Рисунок 4 — Внешний вид измерительных трансформаторов (трансформаторов тока).