Индуктивность

Свойства индуктивности:

Индуктивность обладает комплексным импедансом (сопротивлением):

{{\dot{Z}}_{L}}=j\omega L=j2\pi fL\text{,}

где:

j — мнимая единица;

ω — циклическая частота (рад/с) протекающего синусоидального тока;

f — частота в Гц;

L — индуктивность катушки (Генри).

Комплексный импеданс в общем случае записывается как сумма активного и реактивного сопротивлений:

{{\dot{Z}}_{c}}=R+j\cdot {{X}_{c}}=j\omega L.

Отсюда следует, что активное сопротивление идеальной индуктивности равно нулю, а реактивное сопротивление равно: |{{X}_{c}}|=\omega L. Для постоянного тока частота равна нулю, следовательно, реактивное сопротивление равно нулю. Индуктивность по определению численно равна отношению создаваемого током потока магнитного поля, пронизывающего катушку, к силе протекающего тока. Отсюда следует, что применять катушки индуктивности имеет смысл только в цепях переменного тока.

Если Вы не привыкли слепо доверять формулам, то следующий абзац для Вас:

Спойлер

Чтобы разобраться, почему с ростом частоты тока у индуктивности растет реактивное сопротивление, необходимо вспомнить явление самоиндукции, которое можно сформулировать в 2 эквивалентных вариантах:

  • Возникновение магнитного потока самоиндукции при протекании по цепи тока;
  • Возникновение ЭДС индукции в том контуре, по которому протекает переменный ток.

По Закону электромагнитной индукции Фарадея, ЭДС индукции можно записать как:

{{\varepsilon }_{i}}=-\frac{d\Phi }{dt}\text{,}

где:

εi — величина ЭДС индукции;

Φ — величина магнитного потока.

В случае контура, содержащего N витков, используется понятие потокосцепления Ψs самоиндукции (Ψs = NΦs).

{{\psi }_{s}}=LI\text{,}

L=\frac{{{\psi }_{s}}}{I}\text{.}

С учетом данных формул, можно записать ЭДС и ток самоиндукции:

{{\varepsilon }_{s}}=-\frac{d{{\psi }_{s}}}{dt}\text{=}-L\frac{dI}{dt}\text{,}

{{I}_{s}}=\frac{{{\varepsilon }_{s}}}{R}=-\frac{L}{R}\frac{dI}{dt}\text{.}

Знак минуса показывает, что направление тока самоиндукции противоположно направлению основного тока.

Из этих формул следует, что любые изменения тока в цепи тормозятся, и тем сильнее, чем больше индуктивность цепи и меньше ее сопротивление.

Если сформулировать по научному:

Правило Ленца для явления самоиндукции – ток самоиндукции препятствует любым изменениям основного тока, текущего по цепи.

Можно также сказать, что индуктивность цепи является мерой ее электрической инертности, подобно тому, как масса в механике является мерой инертности тела при его поступательном движении.

И как Вы уже наверняка догадались, природа реактивного сопротивления индуктивности заключена в явлении ЭДС и тока самоиндукции, а скорость изменения величины тока – это его частота.

Схема замещения не идеальной (реальной) индуктивности:

Схема замещения неидеальной (реальной) индуктивности
Рисунок 1 — Схема замещения неидеальной (реальной) индуктивности.

Сопротивление потерь:

В катушках индуктивности помимо основного эффекта взаимодействия тока и магнитного поля, наблюдаются паразитные эффекты, вследствие которых импеданс катушки не является чисто реактивным. Наличие паразитных эффектов ведет к появлению потерь в катушке, оцениваемых сопротивлением потерь:

{{R}_{lose}}={{R}_{CL}}+{{R}_{L}}\text{,}

где:

RCL – диэлектрические потери;

RL – индуктивные потери.

Диэлектрические потери вызваны магнитными свойствами диэлектрика, а также паразитной емкости, которая образуется между витками, вследствие наличия изоляции обмоточного провода, и соответственно появляются межвитковые утечки и прочие потери, характерные для диэлектриков конденсаторов. Однако для современных катушек общего применения эти потери пренебрежимо малы.

Индуктивные потери складываются из следующих составляющих:

  • Потери в проводах:

В свою очередь, потери в проводах вызваны тремя причинами:

  • Провода обмотки обладают омическим (активным) сопротивлением.
  • Сопротивление провода обмотки возрастает с ростом частоты, что обусловлено поверхностным эффектом (скин-эффектом). Суть эффекта состоит в вытеснении тока в поверхностные слои провода. Как следствие, уменьшается полезное сечение проводника и растет сопротивление. Подробнее о поверхностном эффекте можно прочитать [гиперссылка]здесь[/гиперссылка].
  • В проводах обмотки, свитой в спираль, проявляется эффект близости (англ. proximity effect), суть которого состоит в вытеснении тока под воздействием вихревых токов и магнитного поля, которые появляются из-за явления взаимной индуктивности, к периферии намотки. В результате сечение, по которому протекает ток, принимает серповидную форму, что ведет к дополнительному возрастанию сопротивления провода. Подробнее о эффекте близости можно прочитать [гиперссылка]здесь[/гиперссылка].
  • Потери на перемагничивание ферромагнитного сердечника:

Данные потери связаны с эффектом гистерезиса в ферромагнетиках.

  • Потери на вихревые токи (токи Фуко):

Переменное магнитное поле индуцирует вихревые ЭДС в окружающих проводниках, т.е. витках и сердечнике. При этом возникают вихревые (т.е. замкнутые в кольце) токи — токи Фуко, которые по физической природе ничем не отличаются от индукционных токов, возникающих в линейных проводах. Помимо электрических потерь, вихревые токи также разогревают каркас и обмотку катушки.

Резонансная частота индуктивности:

{{f}_{p}}=\frac{1}{2\pi \sqrt{L{{C}_{L}}}}.

При f > fр катушка индуктивности в цепи переменного тока ведет себя как конденсатор. Следовательно, индуктивность целесообразно использовать лишь на частотах f < fp, на которых ее сопротивление носит индуктивный характер. Обычно максимальная рабочая частота индуктивности примерно в 2—3 раза ниже резонансной.

Добротность:

Добротность катушки индуктивности определяется отношением между ее реактивным и активным сопротивлениями:

Q=\frac{\omega L}{{{R}_{lose}}}\text{.}

Повышение добротности достигается оптимальным выбором диаметра провода, увеличением размеров катушки индуктивности и применением сердечников с высокой магнитной проницаемостью и малыми потерями, намоткой вида «универсаль», применением посеребренного провода, применением многожильного провода вида «литцендрат» для снижения потерь, вызванных скин-эффектом. Подробнее о проводе вида «литцендрат» можно прочитать [гиперссылка]здесь[/гиперссылка].