Диод

Диод (англ. diode, от др.-греч. δις — два и ὁδός — путь) – устройство на основе полупроводника, обладающее различной проводимостью в зависимости от направления электрического поля.

Принцип работы:

Принцип работы основан на использовании явления p-n перехода, проводимость которого зависит от полярности приложенного напряжения. Подробнее об этом явлении можно прочитать здесь.

Функции (в зависимости от конструкции и назначения):

  • Избирательное пропускание тока, в зависимости от его направления.
  • Стабилизация напряжения.
  • Прием световых сигналов.
  • Излучение света.

Назначение:

  • Преобразования переменного тока в однонаправленный пульсирующий (выпрямление тока).
  • Выделение средневыпрямленного и среднеквадратичного значения тока (диодные детекторы).
  • Защита устройств от неправильной полярности включения, защита входов схем от перегрузки, ключей от пробоя ЭДС самоиндукции, возникающей при выключении индуктивной нагрузки и т.п.
  • Коммутация высокочастотных сигналов.
  • Ограничение или стабилизация уровня напряжения.
  • Детектирование наличия и уровня освещенности.
  • Излучение света.

Классификация диодов:

По способу монтажа:

  • для поверхностного монтажа (SMD/SMT);
  • для навесного монтажа (TH);
  • интегральные (тонкопленочные).

По назначению:

  • Выпрямительные;
  • Импульсные;

Имеют малую длительность переходных процессов, предназначены для применения в импульсных режимах работы.

  • Детекторные;
  • Смесительные;

Предназначены для преобразования высокочастотных сигналов в сигналы разностной частоты, определяемой частотой задающего генератора.

  • Переключательные;

Применяются в устройствах управления уровнем сверхвысокочастотной мощности.

  • Ограничительные;
  • Защитные;

Защита аппаратуры от повышения сетевого напряжения.

  • Генераторные;

Используются для генерации ВЧ и СВЧ колебаний.

  • Приемные;
  • Излучательные.

По конструкции:

  • Диод Шоттки;
  • СВЧ-диод;
  • Стабилитрон (диод Зенера);
  • Варикап;
  • Светодиод;
  • Фотодиод;
  • Pin диод;
  • Лавинный диод;
  • Лавинно-пролетный диод;
  • Диод Ганна;
  • Туннельный диод;
  • Обращенный диод.

По размеру pn перехода:

  • плоскостные;
  • точечные.

По частотному диапазону:

  • Низкочастотные;
  • Высокочастотные;
  • СВЧ.

ВАХ диода:

Для начала рассмотрим ВАХ идеального диода.

ВАХ идеального диода
Рисунок 1 — ВАХ идеального диода.

Как видно из графика, диод проводит ток только при прямом напряжении на его выводах (т.е. плюс на аноде, минус на катоде). Ток I0 – это ток насыщения, т.е. максимальный обратный ток, вызванный тепловым дрейфом носителей тока в области p-n перехода, он на несколько порядков меньше прямого тока.

Для любителей формул, можно отметить, что ВАХ идеального диода описывается следующим выражением:

Спойлер

\displaystyle {{I}_{front}}(U)={{I}_{0}}\cdot ({{e}^{\frac{U}{{{\varphi }_{T}}}}}-1)\text{.}

Где:

I0 – ток насыщения.

{{\varphi }_{T}}=\frac{kT}{q}=\frac{kT}{{\bar{e}}}\approx 26\text{ mV}— тепловой потенциал (е – элементарный заряд электрона, k – постоянная Больцмана, Т – абсолютная температура).

Однако, в жизни, как известно, не все так просто и приходится постоянно напрягать свой мозг. ВАХ реального диода несколько отличается.

ВАХ реального диода
Рисунок 2 — ВАХ реального диода.

Первое отличие – разное напряжение открывания диода (U0), в зависимости от используемого материала полупроводника. Для кремния (Si) оно составляет примерно 0.7 В; для германия (Ge) – 0.3 В.

Второе отличие – другой вид обратной ветви, наличие пробоя p-n перехода.

Обычно выделяют участки электрического (А-Б) и теплового (Б-В) пробоя. Электрический пробой по своей сути нарушает лишь электрическую изоляцию областей p-n перехода, поэтому он является обратимым. Тепловой пробой напротив, нарушает физическую целостность p-n перехода, по сути, он просто выгорает, очевидно, что тепловой пробой является необратимым и приводит в негодность элемент.

Если Вам интересны причины пробоя, то следующий абзац для Вас.

Спойлер

Электрический пробой:

Электрический пробой возникает из-за резкого возрастания обратного тока вследствие резкого уменьшения сопротивления запирающего слоя. Внимательный читатель тут же возразит: «как же так? Ведь увеличение обратного напряжения для p-n перехода вызывает увеличение геометрических размеров запирающего слоя, а, следовательно, и его сопротивления!». А объясняется это дело достаточно просто. Реальность всегда придумывает Нам какие-либо сложности, поэтому в полупроводниках присутствуют два явления – лавинное размножение заряда и туннельный эффект, по названиям, которых и разделяют электрический пробой на лавинный и туннельный. И если для понимания первого эффекта достаточно прочитать про его суть, то туннельный эффект является квантовым эффектом, и для его понимания просто необходимо напрячь свой мозг.

Лавинное размножение заряда происходит за счет явления ударной ионизации, суть которого состоит в том, что электроны, ускоряясь электрическим полем, приобретают энергию, достаточную для выбивания электронов из атомов кристаллической решетки полупроводника, которые в свою очередь, также ускоряются данным полем, и происходит так называемый «лавинный» процесс отрыва электронов от атомов электрическим полем. Результатом этих процессов является резкое увеличение проводимости, а, следовательно, уменьшение сопротивления запирающего слоя практически без изменения его геометрических размеров.

Туннельный эффект (в англоязычной литературе также известен как эффект Зенера) наиболее вероятен в p-n переходах малой толщины. Суть его в том, что электроны, имеющие полную энергию меньше, чем высота энергетического барьера, таки проникают через этот энергетический барьер, в нашем случае — барьер p-n перехода, без изменения энергии, при таких напряжениях, когда зона проводимости в n-области имеет равные энергетические уровни с валентной зоной р-области. Этот эффект является полностью квантовым и противоречит классической механике. В качестве упрощенного объяснения можно сказать следующее. Из решения уравнения Шредингера для задачи потенциального барьера, следует ненулевой коэффициент прозрачности барьера для частиц с энергией равной или менее высоты этого барьера. Ну а чтобы устранить возможные логические трудности, можно вспомнить о соотношении неопределенностей (соотношение Гейзенберга), которое говорит о том, что если мы уменьшаем неопределенность в координате частицы, то увеличиваем неопределенность в импульсе, и наоборот. Следовательно, Мы не можем сказать достоверно, что частица, прошедшая барьер, действительно имела в момент прохождения определенную энергию.

Также нужно отметить, что туннельный эффект носит вероятностный характер, поэтому наибольшая вероятность его возникновения в p-n переходах с большой концентрацией примесей.

Тепловой пробой:

Тепловой пробой возникает, когда выделяемое на p-n переходе количество теплоты, создаваемое обратным током, превышает отводимое. Сопротивление полупроводника уменьшается с ростом температуры, следовательно, из-за снижения сопротивления p-n перехода, через него еще более возрастает протекающий ток и происходит тепловое разрушение p-n перехода.

Паразитные свойства диода:

Влияние температуры:

Так как дрейфовые процессы в полупроводнике играют не последнюю роль, то и температура может существенно изменить ВАХ p-n перехода и соответственно параметры диода.

Влияние температуры на ВАХ диода
Рисунок 3 — Влияние температуры на ВАХ диода.

{{i}_{reverse}}={{i}_{reverse}}({{T}_{0}})\cdot {{2}^{\frac{(T-{{T}_{0}})}{10}}}\text{.}

Где:

{{T}_{0}} — нормальная температура окружающей среды (20{}^\circ C);

T — температура эксплуатации диода.

Емкость:

Так как p-n переход является границей раздела областей с различными типами проводимости, т.е. разно полярными зарядами, то вполне очевидно, что он имеет определенную величину электрической емкости. При обратном напряжении на переходе, запирающий слой, имеющий высокое сопротивление, играет роль диэлектрика.

В общем случае емкость диода состоит из барьерной и диффузионной.

Диффузионная емкость вызвана наличием разно полярных зарядов внутри полупроводника. Проявляется эта емкость при протекании значительного прямого тока.

\displaystyle {{C}_{d}}={{I}_{front}}\cdot \frac{{{\tau }_{eff}}}{{{\varphi }_{T}}}\text{.}

Где:

\displaystyle {{I}_{front}} – протекающий прямой ток через диод;

\displaystyle {{\tau }_{eff}} — эффективное время жизни неосновных носителей заряда;

\displaystyle {{\varphi }_{T}} — тепловой потенциал.

Барьерная емкость возникает из-за наличия неосновных носителей заряда, т.е. из-за того, что ток в полупроводнике может возникать не только при движении электронов, но и при движении дырок.

\displaystyle {{C}_{b}}=\frac{{{C}_{0}}}{{{\left( 1-\frac{{{U}_{reverse}}}{{{U}_{k}}} \right)}^{\lambda }}}\text{.}

Где:

\displaystyle {{C}_{0}} — емкость p-n перехода при Т = 20 °С и Uобр. = 0 В;

\displaystyle {{U}_{reverse}} — обратное напряжение на диоде;

\displaystyle {{U}_{k}} — контактная разность потенциала p-n перехода (для Si – 0.9-1.2 В; для Ge – 0.6-0.7 В);

\displaystyle \lambda — коэффициент распределения примесей в полупроводнике (0.5 для ступенчатого распределения; 0.3 для линейного).